R-cran-ddalpha

Jul 20, 2023

Depth-Based Classification and Calculation of Data Depth

Contains procedures for depth-based supervised learning, which are entirely non-parametric, in particular the DDalpha-procedure Lange, Mosler and Mozharovskyi, 2014. The training data sample is transformed by a statistical depth function to a compact low-dimensional space, where the final classification is done. It also offers an extension to functional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included.



Checkout these related ports:
  • Zn_poly - C library for polynomial arithmetic
  • Zimpl - Language to translate the LP models into .lp or .mps
  • Zegrapher - Software for plotting mathematical objects
  • Zarray - Dynamically typed N-D expression system based on xtensor
  • Z3 - Z3 Theorem Prover
  • Yices - SMT solver
  • Yacas - Yet Another Computer Algebra System
  • Xtensor - Multi-dimensional arrays with broadcasting and lazy computing
  • Xtensor-python - Python bindings for xtensor
  • Xtensor-io - Xtensor plugin to read/write images, audio files, numpy npz and HDF5
  • Xtensor-blas - BLAS extension to xtensor
  • Xspread - Spreadsheet program for X and terminals
  • Xppaut - Graphical tool for solving differential equations, etc
  • Xplot - X11 plotting package
  • Xlife++ - XLiFE++ eXtended Library of Finite Elements in C++