Siesta

Jul 20, 2023

Program to perform efficient electronic structure calculations

SIESTA is both a method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. SIESTA’s efficiency stems from the use of strictly localized basis sets and from the implementation of linear-scaling algorithms which can be applied to suitable systems. A very important feature of the code is that its accuracy and cost can be tuned in a wide range, from quick exploratory calculations to highly accurate simulations matching the quality of other approaches, such as plane-wave and all-electron methods.



Checkout these related ports:
  • Zx - MQT ZX A library for working with ZX-diagrams
  • Zotero - Reference management for bibliographic data and research materials
  • Yoda - Particle physics package with classes for data analysis, histogramming
  • Xtb - Semiempirical Extended Tight-Binding Program Package
  • Xmakemol - Molecule Viewer Program Based on Motif Widget
  • Xdrawchem - Two-dimensional molecule drawing program
  • Xcrysden - Crystalline and molecular structure visualisation program
  • Xcfun - Exchange-correlation functionals with arbitrary-order derivatives
  • Wxmacmolplt - Graphical user interface principally for the GAMESS program
  • Wwplot - Plotting tool for experimental physics classes
  • Wannier90 - Maximally-localized Wannier functions (MLWFs) and Wannier90
  • Votca - CSG and XTP libraries for atomistic simulations
  • Voro++ - Three-dimensional computations of the Voronoi tessellation
  • Vmd - Molecular visualization program
  • Vipster - Crystalline and molecular structure visualisation program